현대에코포럼

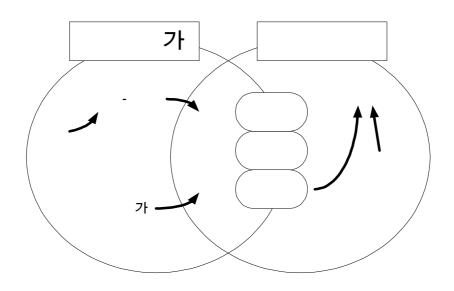
유해화학물질의 위해성(危害性) 평가 및 관리 방안

1. 서론

- 현재 전 세계적으로는 약 1,200만 여종의 화학물질이 존재하고 있으며 매년 2,000여종의 새로운 화학물질이 개발되어 상품화되고 있음
- 우리나라는 현재 35,000여종의 화학물질이 유통되고 있고 매년 약 200여종이 신규로 출시되고 있음
 - 특히 우리나라의 경우, 대부분의 화학물질들을 수입에 의존하고 있기 때문에 그 종류와 사용량은 지속적으로 증가할 전망임
 - 따라서 화학물질에 대한 안정성 및 그 영향에 대한 정확한 평가와 관리방안의 확충이 절실히 요구되고 있음
- 우리나라는 1990년에 이르러 일반 공업용 화학물질로 인한 국민 건강과 환경 보호를 목적으로 유해화학물질관리법을 제정하는 등 신규화학물질의 제조/수입에 대한 사전 위해성 심사제도를 도입하였음
 - 현재 국내에서 시행하고 있는 화학물질의 관리는 13개 법에 의해 7개 부처에 분산되어 관리, 규제하고 있음
- 현대 사회에서는 이와 같이 오염물질의 존재 여부나 처리방법 등의 오염도 평가뿐만 아니라, 특정유해화학물질에 노출됨에 따라 발생 가능한 인체영향에 대한 정도와 심각성을 계량적으로 평가하고 이를 홍보해 나가는 것에 초점을 두고 있음
- 현재 우리가 안고 있는 문제들을 해결하고, 점점 더 복잡하고 다양해지고 있는 사회 현상 속에서 이해관계와 불확실성으로 얽혀있는 환경문제를 풀어나가기 위해서 과학적이고 합리적인 방법론이 요구됨
 - 최근 이러한 문제점들을 해결할 수 있는 구체적인 방법론으로 위해성 평가(risk assessment)를 실행
 - 이미 선진 각국의 규제 기관 즉, 미국 환경보호청, 산업안전보건국, 환경보건과학 국립연구소, 산업안전 및 보건국립연구소, 식품의약국, 소비자제품 안전 협회, 그 리고 독성물질 및 질병등록청 등과 같은 주로 화학물질의 규제와 관련된 기관에 서는 위해성 평가를 정책결정(decision-making) 수단으로 사용하고 있음

- 위해성 평가 및 관리(risk assessment and management)의 두 주제가 유해화학물 질의 관리 등 환경 관련 연구에 있어서 그 방향의 기본 축을 이룸

2. 인체 위해성 평가의 목적 및 방법론

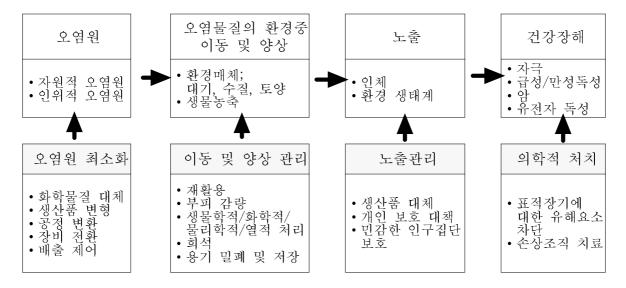

- 위해성 평가는 유해물질에 대한 역학적, 임상적, 독성학적 및 환경학적 연구결 과로부터 모델을 이용한 외삽(extrapolation)을 통해, 주어진 노출 조건 하에 서 인간에 미칠 수 있는 건강 위해 범위를 예측하고 평가하는 것임
- 위험성 확인(hazard identification), 노출 평가(exposure assessment), 용량-반응 평가(dose-response assessment) 및 위해도 결정(risk characterization)의 주요 4단 계를 통해 수행됨

○ 위해성 평가의 필요성은 다음과 같은 요인에 기인함

- 첫째, 환경오염 심화에 따른 인체건강영향에 대한 관심 증대, 둘째, 사회적·행정 적으로 독성정보의 정량화 필요성 대두, 셋째, 현실성 있는 오염관리, 그리고 넷 째, 기준치 제정, 제도시행 전후의 비용효과분석이 가능.
- 위해성 평가를 통하여 환경오염의 인체영향에 대한 종합적이고 계량적인 정보가 제공될 수 있어 국민, 정부, 기업 등 각 주체간의 의사 교환이 수월해지고 국민 의 신뢰 회복에 기여할 수 있음
- 또한 수질 등 오염에 대한 합리적 기준을 제시할 수 있고 이에 따른 공학적 처리기술 목표 설정을 가능케 함.
- 위해성 평가의 궁극적 목적은 평가 결과를 위해성 관리(risk management)를 위한 유용한 정보로서 사용하기 위한 것이라 할 수 있음
- 위해성 평가 과정을 거쳐 얻어진 평가치는 여러 사회제도적인 문제와 기술적, 경제 적인 문제들을 고려하여 정책 결정자들이 정책결정의 수단으로 이용 가능
- 동시에 질병의 예방 및 건강한 삶의 유지, 그리고 위해 요인의 저감에 있어 그 과 학적 토대를 마련할 수 있음
- 위해성 평가 방법론이란 환경오염으로 인해 유발될 수 있는 인체의 위해성을 定性 또는 定量的으로 추정하는 구체적이고도 과학적인 평가 방법론임
- 단순히 환경 중 오염도를 위해도(risk)로써 알기 쉽게 수치적으로 제시하는 과정만 이 아니라 오염물질의 발생에서부터 인체로의 영향까지를 통계학적, 독성학적, 수

 학적, 사회정책 및 경제학적 측면 등을 모두 고려하여, 정책 결정자들과 일반대중이 과학적 기반 위에서 합일점을 찾도록 하는데 과학적 근거로 제시될 수 있는 방법론임

- 위해도(risk)란 유해물질의 특정농도나 용량에 노출된 개인이나 집단에 있어 유해 한 결과가 발생할 확률(probability) 또는 가능성(likelihood)으로 정의됨
- 건강 위해성 평가란 '어떤 독성 물질이나 위험상황에 노출되어 나타날 수 있는 개 인 혹은 집단의 건강 피해 확률을 추정하는 과학적인 과정'이라고 정의될 수 있음
- 다시 말하면 건강 위해성 평가란 사람이 환경적 위험(environmental hazard)에 노출되었을 경우, 발생 가능한 영향을 정성 또는 정량적으로 추정하는 과정임



위해성 평가(risk assessment)와 위해성 관리(risk management)

3. 오염원에서부터 인체영향까지 각 범주별 관리대책

○ 오염원의 최소화

- <u>화학물질의 대체</u>: 생산품에 사용되는 원료를 독성이 약한 물질로 대체; 용제성 잉 크를 수용성 잉크로 대체, 즉 톨루엔과 같이 독성이 강한 유기용제를 기본으로 하 는 잉크를 수용성 잉크로 대체하여 유기용제(휘발성 유기오염물질)의 배출을 감소

- 생산품의 전환 : 유연 휘발유 → 무연휘발유; 납의 배출을 감소
- <u>공정</u> 변환 : 특정 플랜트나 공정의 변환이 이루어짐; 소금물로 염소, 수소, 염화수소를 생성하는 전기분해를 기본으로 하는 chlorialkali공정에서 사용되는 수은셀로 인한 수은배출과 공정폐수에서 염소계 탄화수소류를 포함 → 공정에서 사용되는 수은셀을 차폐셀로 하는 경우 수은오염을 방지
- <u>장비 대체</u>: 석유정제에 사용되는 구형 냉각회로를 공기나 폐쇄-회로를 이용한 냉각시스템으로 전환함으로써 정제에 소모되는 수량을 감소시킴으로써 폐수량을 줄이고 폐수 내에 중금속, 다환방향족, 시안 등의 유해물질을 유의한 감소
- <u>일시적인 배출 제어</u>: 저장탱크, 밸브, 플랜지 및 접속장치는 일시적인 탄화수소류 배출의 주요오염원이므로 floating-roof(공기 중에 노출되는 표면적을 제한)를 사용, 저장탱크를 밀폐, 배출물을 모아서 재사용, 내용물을 냉각, 카본을 이용한 증기상의 물질을 흡착함으로써 탄화수소류의 배출을 제어

○ 유독물질의 이동 및 환경 중 양상에 대한 제어

- <u>재활용</u> : 폐기물의 재이용시 폐기물을 구입하여 성상을 분석하고 용도와 필요한 재 공정을 규명하여 판매가 이루어짐
- <u>부피 감량</u>: 탈수, 압축(그러나 이 방법은 단순하고 최소의 비용이 드는 단기간의 해결책이기는 하지만 유독물질의 독성 및 양을 제거하지는 못함)
- <u>처리</u>: 유독 산업폐기물 내 독성 잔류물을 제거하는 하여 인체 및 생태계 위해성을 감소하는 방법

- ▶ 생물학적 처리: 활성슬러지. 폭기성 라구운
- ▶ 화학적 처리: 산화-환원법, 침전법
- ▶ 물리적 처리: 폭기 및 탄소상 흡착법
- › 열적 처리: 소각, 유동상 소각법(던 불완전 연소로 다이옥신과 디벤조퓨란과 같은 유독독성물질이 배출되므로 소각로 설계, 공정과 장비에 대한 주기적인 감시를 통해 관리 필수).

- 희석/용기밀폐/저장/매립

- ▶ 재활용/재이용이나 처리/분해로 인해 독성물질이 제거되지 않는 경우
- ▶ 위해도가 비교적 적은 물질은 물이나 다른 독성이 없는 물질을 혼합하여 희석
- 위해도가 비교적 큰 물질은 용기에 담아 밀폐, 탱크저장, 매립, 지하저장 등
 (단 매립의 경우는 지표수/지하수 오염이 문제제기, 소각로에서 남은 재나 처리 찌꺼기는 캡슐에 담아 다른 매체로 이동하지 못하도록 방지)

○ 노출관리(exposure control)

- 독성물질을 제어하는 최선의 방법이라도 독성물질의 위해도를 제어할 수는 없음
 - ▶ <u>생산품 대체</u> : 소비자 제품에 유독물질의 사용금지(가정용 살충제, 목재보존재)
 - ▶ 개인보호구 : 오염물질에 민감한 인구집단이나 직업성 노출군은 방진 마스크, 보호의 국소 배기장치 등으로 개인 보호대책 마련
 - ▶ <u>민감한 인구집단 보호</u> : 일상 생활이나 작업장에서 사전검사를 통해 민감한 인 구집단에 대해 유해환경에 대한 노출을 억제

○ 의학적 처치

- ▶ 독성물질의 표적기관으로 이동을 차단
- ▶ 항생제 투여

○ 제어 대책 선택 시 고려사항

- 위해 정도에 따른 선택:
 - › De Minimis risk : 일반적으로 인체에 위해가 없을 최소한의 위해도로 즉 환경 중으로 방출되는 유해물질의 양이나 농도가 처리하지 않아도 인체에 유해한 영 향이 없을 정도의 위해도로 다른 방지대책이 필요 없다고 할지라도 계속적인 감 시는 요구

- › 상대 위해도 : 한 유해물질이나 매체에 대한 위해도가 상대적으로 다른 물질에 대한 위해도보다 높다면 우선적으로 관리할 순위에 둠
- ▶ 불확실성: 사안결정에 있어 우선 불확실성 분석을 먼저 실행
- 효과에 따른 선택: 가장 효과적 방법은 일차 발생장소에서 유독물질 발생을 예방
 - ▶ 가장 효과적인 방법: 발생원에서 유독물질의 경감/감소, 재활용/재이용
 - ▶ 덜 효과적인 방법: 생물학적, 화학적, 물리적 처리
 - ▶ 비효과적인 방법: 희석, 매립, 저장
- 비용-효과 분석
 - ▶ 유독물질을 처리하는 데에는 필수적으로 비용이 소모, 처리하지 않음으로써 인체 및 생태계에 주는 독성물질의 영향으로 인해 비용이 더 소모될 수 있으므로 적절한 비용-효과 분석을 통해 합일점을 찾는 것이 중요. 가장 비용이 적게드는 방법은 유독물질의 발생 방지.

4. 21세기 환경 패러다임의 변화

- 21세기가 접어들면서 인간 게놈프로젝트로 인해 유전인자배열이 밝혀짐으로써 환경보건 분야에도 새로운 지평이 열리고 있으며, 환경보건학 분야에 새로운 패러다임들이 제시되고 있음
 - 많은 수학적 가정들과 불확실성들에도 불구하고 유해화학물질과 인체내 상호작용을 규명하는 작업이 수행되어 유해화학물질의 노출로 인한 인체 위해성 평가가 20세기에 많은 진보를 가져온 것은 사실이지만 상기 두 변수간의 인과관계 (causality)는 증명이 되지 않은 상태임
 - 유전인자 배열이 알려지고 유전인자에 해당되는 작용이 21세기의 큰 과제로 등 장하면서 다음과 같은 패러다임의 변화가 일어나고 있음
 - ▶ 독성물질을 중심으로 한 연구가 질병 중심 연구로,
 - ▶ 단일 원인물질에 대한 영향을 다인성 원인물질로 인한 인체 영향으로,
 - ▶ 단일 기전으로 인한 질병 발생을 다인성 기전으로 인한 질병발생으로,
 - ▶ 질병중심에서 인체 건강중심으로.
 - ▶ 질병발생에 영향을 주는 DNA 손상연구에서 DNA 기전연구로,
 - ▶ 인체 질병 연구에서 기관-조직-세포-분자 순으로 연구 진행방향이 역순으로 (분자-세포-조직-기관) 진행방향이 전환되고,

Multidisciplinary approach of Environmental Health Science in the next		
century		
(1)	20c paradigm Toxin-based	21c paradigm Disease-based
(2)	Single agent	
(3)	unidirectional mechanisms	multiple agent
, ,	disease	multidirectional mechanisms
(4)		health
(5)	DNA damage	DNA function
(6)	organism/organ/cell/molecule	molecule/cell/organ/organism
(7)	exposure-based cohorts	susceptibility & dose-based cohorts
(0)	exposure surrogate	dose measures
(8)	effluent measurement	indicator measure
(9)	powerless epidemiology	
(10)	environmental risk assessment	powerful epidemiology
(11)	source assumption	individual risk assessment
(12)	risk management	source attribution
, ,		environmental public health
(a)	small science	
(b)	interdisciplinary	big science
(c)	earth compartment	multidisciplinary
(d)	scientific uncertainty	earth feedback loops (vengeful Gaia)
(e)	secondary prevention	precautionary principle
(f)	risk numerology	·
(g)	media specific	primary prevention
(h)	science, technology progress	risk characterization
		holistic
		creationism, alien abductions animal equality

▶ 원인물질과 질병사이의 인과관계를 규명하는 역학연구에 있어 노출자료가 부 족하지만 다른 대체 노출지표를 이용한 불완전한 노출중심의 코호트¹)에서

¹⁾ 코호트(coherts)란 통계자료를 공유하는 집단을 의미(예 : 동시출산 집단)

민감한 인구집단을 규명하고 실제 그 인구집단에서 용량에 근거한 코호트 연구로,

- ▶ 결과물 측정에서 지표물질의 측정으로,
- ▶ 인과관계 규명이 어려웠던 역학연구가 강력한 역학연구로.
- ▶ 환경 생태계 그리고 인구집단에 대한 위해성 평가가 개인 위주의 위해성 평가로.
- ▶ 가정(assumption)을 이용한 오염원 추정에서 해당 오염물질에 대한 오염원 기여도를 규명하는 방향으로,
- ▶ 국지적인 위해성 관리에서 거시적인 환경 보건건강을 우선시하는 방향으로등
- 이와 함께 아래와 같은 전환이 이루어질 것으로 예측되고 있음
 - ▶ 각각 전문적인 분야의 학문에서 이들 모든 학문을 하나로 묶는 학문(big science)으로.
 - ▶ 학제간 중심 연구가 두 개 이상의 다학제간 중심연구로,
 - › 지구의 각 부분별 연구에서 총체적인 지구 순환에 관한 연구로,
 - ▶ 과학적 불확실성을 예방적인 원리로 풀어가고,
 - ▶ 인체 및 생태계 질병발생에 있어 소극적인 이차적인 예방에서 적극적인 일차 예방으로,
 - ▶ 수치적인 위해도 계산에서 위해도 결정단계로.
 - 각각의 환경 매체별 영향을 다매체/ 다경로 총체적인 영향평가로,
 - 과학과 기술발전에서 창조론, 외계인과의 융화, 동물과의 평등 등과 같은 철학적이고 대명제로 등
- 이와 같이 유전인자로 시작하여 인간을 포함하는 전지구적인 순환차원에서 유해 화학물질의 발생에서 질병/생태계/지구영향 규명에 이르기까지 대명제로의 전환 점에서 모든 학자들이나 사회집단이 21세기 감각에 맞는 발빠른 대응이 필요함

신동천 교수(연세대학교 환경공해연구소 소장) (dshin5@yumc.yousei.ac.kr ☎ 361-5361)